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Advanced glycation: an important pathological event in
diabetic and age related ocular disease

Alan W Stitt

The formation of advanced glycation end products
(AGEs) is a key pathophysiological event with links to a
range of important human diseases. It is now clear that
AGEs may act as mediators, not only of diabetic complica-
tions1 2 but also of widespread age related pathology such
as Alzheimer’s disease,3 decreased skin elasticity,4 5 male
erectile dysfunction,6 7 pulmonary fibrosis,8 and atheroscle-
rosis.9 10 Since many cells and tissues of the eye are
profoundly influenced by both diabetes and ageing, it is
fitting that advanced glycation is now receiving consider-
able attention as a possible modulator in important visual
disorders. An increasing number of reports confirm wide-
spread AGE accumulation at sites of known ocular pathol-
ogy and demonstrate how these products mediate
crosslinking of long lived molecules in the eye. Such stud-
ies also underscore the putative pathophysiological role of
advanced glycation in ocular cell dysfunction in vitro and
in vivo.

This article reviews some of the important eVects that
advanced glycation has on ocular tissues and the role that
AGEs, and their specific receptors, have in the initiation
and progression of sight threatening disorders such as dia-
betic retinopathy, glaucoma, cataract formation, and age
related macular degeneration (AMD). This review also
considers pharmacological strategies to prevent or neutral-
ise the eVects of AGEs and the recent development of
potential therapies for AGE induced disease processes.

Biochemistry of AGE formation in biological
systems
AGEs form via non-enzymatic condensation reactions
between reducing sugars and å-amino groups or
N-terminal groups. These glycation modifications occur
preferentially on lysine and arginine amino acids, although
they can occur on free amine containing lipids and DNA
and proceed spontaneously via a complex series of chemi-
cal rearrangements to yield reactive products with varying
crosslinking, pigmentation, and fluorescence properties.11

Non-enzymatic glycation reactions were first described
around the turn of the century by Louis Camille Maillard
who predicted that they could have an important impact
on medicine and coined the term “Maillard reaction.”12

Unfortunately Maillard chemistry was not recognised by
medical researchers until after its “rediscovery” by food
scientists nearly 50 years later, who realised that the prod-
ucts of non-enzymatic glycation were important in food
flavour, aroma, and nutritional bioavailability.13 Only
recently has the full pathophysiological significance of this
ubiquitous reaction emerged as a field of study in medicine
in its own right.

In biological systems, reducing sugars react with free
amino groups to form SchiV base adducts and Amadori
products such as fructose-lysine. It is worth noting that
glucose is among the least reactive sugars within biological

systems, while other sugars and dicarbonyls, many of
which are located intracellularly, such as glucose-6-
phosphate and glyceraldehyde-3-phosphate, are much
more reactive and participate in glycation reactions at a
proportionally faster rate14 (Fig 1). In any case, the chemi-
cally unstable SchiV bases and Amadori products are freely
reversible and therefore exist in an equilibrium which is
proportional to the amount of free sugar. An understand-
ing of non-enzymatic glycation kinetics in vivo led to the
conceptualisation of glycosylated haemoglobin and to the
eventual development of the clinical assays which measure
Amadori product formation on the HbA1 amino terminal
valine of the â chain over a 28 day period (HbA1c)

15 thereby
providing diabetologists with a useful index of glycaemic
control.16 Significantly, the levels of Amadori products in
diabetic patients are usually no more than twofold to
threefold higher than in their non-diabetic counterparts,
which is an indication of the freely reversible nature of
these products and the equilibrium which is always
reached between modified and non-modified forms of a
protein. Therefore, Amadori modifications do not accu-
mulate indefinitely on long lived macromolecules and
there is no correlation between the formation of these
adducts on tissues and diabetic complications.17

Non-enzymatic glycation reactions culminate in the for-
mation of AGEs. The majority of these products are
formed from a vast range of precursor molecules, the vari-
able chemical nature of which contributes to AGE
heterogeneity. For example, the Amadori intermediate can
undergo metal catalysed oxidative reactions and gives rise
to irreversible “glycoxidation” products such as N-å-
carboxymethylated lysine (CML) or N-å-(carbo-
xyethyl)lysine (CEL)18 19 which can accumulate on the
substrate to which they are attached and/or lead to the for-
mation of highly reactive dicarbonyl compounds. Dicarbo-
nyls such as 1-, 3-, or 4-deoxyglucosones, glyoxal, and
methylglyoxal are highly reactive intermediates, which will
in turn react with proteins and propagate intramolecular or
intermolecular crosslink formation20 21 (Fig 1). These path-
ways are an equally important source of AGEs within the
cell and, because they arise from highly reactive “AGE
intermediates,” they can occur very rapidly.20 21 The
chemical nature of these biologically important AGEs, as
they occur naturally in vivo, is largely unknown owing to
their heterogeneous and unstable nature; nevertheless,
there is a growing population of structurally defined AGE
adducts such as pyrraline,22 pentosidine,23 CML,18 and
crossline24 (Fig 2) which have been found to be elevated in
diabetic tissues.25 26

While AGEs form in vivo, it is now clear that
extrinsically formed moieties can also have a significant
role in our advanced glycation burden. Tobacco curing is
essentially a Maillard “browning” reaction and combus-
tion of these adducts during smoking can release reactive,
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toxic glycation products (or glycotoxins) which enter the
blood stream and because of their crosslinking properties
become fixed in tissues.27 28 Recent evidence also suggests
that many foods can form very high AGE levels during
cooking which, upon digestion, release reactive peptide
species into the circulation with an ability to form covalent
crosslinks.29 30 In the presence of normal renal function
most of these reactive species are rapidly cleared from the
circulation; however, in individuals with compromised
renal clearance, these glycotoxins may remain within the
circulation for prolonged periods of time29 with crosslink-
ing potential and resultant pathophysiological conse-
quences.

Role of AGEs in cellular systems
Since AGEs are constantly forming under physiological
conditions complex receptor systems have evolved to
remove senescent, glycation modified molecules and/or
degrade existing AGE crosslinks from tissues thereby lim-
iting their deleterious eVects. Such receptors play a critical
part in AGE related biology and the pathology associated
with diabetes and ageing.1 2 Several AGE binding mol-
ecules have been described and it has been established that
many of the adverse eVects caused by advanced glycation
are mediated via AGE receptors such as RAGE,31 the AGE
receptor complex (AGE-RC),32 33 and the type I and II
scavenger receptor.34 The precise role of these receptors in
instigating pathological events is currently ill defined and it
remains controversial if some or all AGE receptors serve to

promote or limit AGE mediated cell and tissue dysfunc-
tion. The elucidation of AGE receptor modulatory roles
and signal transduction pathways are areas of intensive
investigation and recent evidence suggests that AGE
receptor binding can initiate important signalling pathways
involving activation of protein kinase C,35 36 tyrosine phos-
phorylation of Janus kinase (JAK)/signal transducers and
activators of transcription (STAT),37 recruitment of
phosphotidylinositol 3' kinase to Ras,38 and induction of
oxidative stress cascades which culminate in NFêB and
AP-1 transcription.39 40

AGEs can initiate a wide range of abnormal responses in
cells and tissues such as inappropriate expression of
growth factors, alterations in growth dynamics, accumula-
tion of extracellular matrix, promotion of vasoregulatory
dysfunction, and initiation of death pathways.1 2 9 Many of
these responses are mediated through receptor mediated
pathways1 and the pathogenic influence of high AGE levels
is well illustrated through several studies by Vlassara et al in
which normoglycaemic animals were chronically injected
with preformed AGE albumin. Such animals developed
high concentrations of crosslinked collagen in their vascu-
lar walls with accompanying hyperpermeability and defec-
tive vasodilatory responses to acetylcholine and nitroglyc-
erin.41 Predictably, these eVects were significantly reversed
by the pharmacological AGE inhibitor aminoguanidine.41

AGE infusion of normoglycaemic rats also upregulated
glomerular collagen IV, laminin â1, and transforming
growth factor âI mRNA levels leading to renal hypertrophy

Figure 1 Schematic diagram illustrating the course of AGE formation on a hypothetical fibrilar protein. Open chain sugars or
glycolytic intermediates (k) react with amino groups (R) to form SchiV bases and Amadori products (A) and eventually
AGEs. Glucose may take several weeks to culminate in AGE formation leading to irreversible crosslink formation between
protein fibrils or oxidative products. Reactive glycolytic intermediates such as methylglyoxal or 3-deoxyglucosone take much less
time to form AGEs. Such AGE crosslinks can have a serious influence on protein structure and function.

AGE

AGE

AGE

AGE

A

AR

R

A

A

A

A

D
ay

s
M

inutes

H
ours

D
ays

W
ee

ks

M
on

th
s

Glucose
Reactive

intermediates

Advanced glycation 747

www.bjophthalmol.com

http://bjo.bmj.com


after only 4 weeks.42 Longer infusion (4 months) caused
marked glomerulosclerosis and albuminuria43 correlating
with changes observed in long term diabetic rats.

These various AGE modifications have serious conse-
quences for macromolecular function, especially in the
case of DNA,44 important structural proteins,45 46 en-
zymes,47 and growth factors/hormones.48 49 Indeed, such
eVects, in combination with inappropriate receptor inter-
actions can initiate a wide range of deleterious cellular
responses, especially within the context of diabetes and
ageing where accumulative levels of AGE are highest and
renal function may be impaired.

AGEs in ocular tissues
LENS

Cataract formation is the leading cause of visual impair-
ment across the world.50 While there are many causes of
lens opacity, ageing is by far the major risk factor51 52 with
excessive ultraviolet light exposure53 and associated free
radical damage of crystallins54 being the key pathogenic
factor. The role of Maillard reactions in cataract formation
has also been extensively studied in both the aged and dia-
betic lens where AGEs of various derivations and molecu-
lar structures have been shown to be markedly elevated.55–58

Glycation generates significant age related alterations in
lens fibre membrane integrity and tertiary structure of lens
proteins. This leads to aggregation and covalent crosslink-
ing of lens crystallins which, irrespective of cataract forma-
tion, can result in reduced deformability with accompany-
ing presbyopia.59 The action of highly reactive dicarbonyl
compounds such as glyoxal and methylglyoxal is enhanced
in diabetes and ageing, leading to AGE crosslinks on á
crystallins with resultant loss of chaperone activity,
increased áâ crystallin content and dense aggregate
formation.60–62

The action of metal catalysed, Fenton reactions which
culminate in hydroxyl radical generation may have major
pathogenic significance in cataract formation, especially in
diabetics where there is a significant accumulation of cop-
per in the lens cells.63 64 Recent evidence suggests that a
close association exists between advanced glycation, metal

ions, and generation of free radicals during age related
cataract formation, where AGE formation on crystallins
leads to binding of redox active copper which in turn
catalyses ascorbate oxidation.65

As stated previously, tobacco products may be a rich
source of reactive glycation products, capable of promoting
AGE formation in vivo.27 In a study of cataractous lenses
there were significantly higher levels of immunoreactive
AGEs in those patients with a history of smoking28 (Fig 3).
Smoking releases highly reactive gas phase oxidants into
the blood stream66 and is a clear risk factor for cataract for-
mation.67 It is now evident that cigarette smoke mediated
AGE formation may act in concert with heavy metal depo-
sition and oxidative stress to precipitate cataract formation.

CORNEA

The Maillard reaction has a significant role in altering cor-
neal biochemistry during diabetes and ageing. Diabetic
keratopathy68 is manifested by thickening of the stroma and
basement membranes, recurrent erosions, corneal
oedema, and morphological alterations in the epithelial
and endothelial layers.68 Such alterations in the human
diabetic cornea are accompanied by decreased protein sta-
bility in the stroma and basal laminae and increased
immunoreactive AGEs which have been partially charac-
terised as pentosidine69 and CML.70 Bowman’s membrane
is heavily glycated in diabetic patients70 while in vitro AGE
modified substrates can significantly reduce corneal
epithelial cell adhesion and spreading,70 possibly by
disruption of integrin/non-integrin receptor-matrix inter-
actions which has obvious pathogenic implications for
recurrent erosions.

AGEs also accumulate in the ageing cornea71 72 as they
do in extracellular matrix proteins in other tissues.4 5 Such
age related crosslinking occurs largely on the collagen
component of the cornea (stroma and lamina) and can be
eVectively reversed using aspirin-like analgesics which have
defined antiglycation properties.73 Interestingly, it has been
proposed that AGE mediated crosslinking could have ben-
efits as a means for stiVening and strengthening the weak-
ened cornea of patients with keratoconus.74

Figure 2 Structures of advanced glycation end products.
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VITREOUS

The vitreous gel is composed largely of a complex network
of crosslinked collagen (type II,V/IX, and XI) fibrils and
the hydrophilic glycosaminoglycan, hyaluronan.75 Disor-
ders of the vitreous often manifest themselves as morpho-
logical changes to the collagen component within the cor-
tical gel and age related vitreous degenerations are usually
a direct result of dissociation of collagen and hyaluronan.76

Structural changes to the vitreous such as liquefaction and
posterior vitreous detachment (PVD) are associated with
ageing while in diabetics such changes occur earlier than in
non-diabetics in a condition Sebag has called diabetic
vitreopathy.77

The molecular basis of vitreous degeneration remains
somewhat equivocal.77 In terms of advanced glycation medi-
ated pathology, it has been demonstrated that glycation can
induce abnormal crosslinks between vitreal collagen fibrils
leading to dissociation from hyaluronan and resultant desta-
bilisation of the gel structure.76 Moreover, AGEs have been
described in human vitreous where they correlate with age
and accumulate at an even higher level in diabetic patients.78

The significance of this has also been shown in bovine vitre-
ous incubated ex vivo in high glucose conditions where
immunoreactive AGEs formed on the vitreous collagen
component and resulted in enhanced crosslinking of the
fibrils—a process which could be significantly inhibited by
the AGE inhibitor aminoguanidine.78

Sebag has described the pathogenesis of vitreous degen-
eration in diabetics as a process of “precocious senes-
cence”79 and while other non-glycational physiological and
biochemical processes contribute to vitreous degeneration
it would appear that AGEs have an important role in
diabetic and ageing vitreous dysfunction.

RETINA (DIABETIC RETINOPATHY)
In diabetes the retinal microvasculature becomes progres-
sively dysfunctional in response to variable hyperglycaemia
and in this progressive disease there is widespread loss of
retinal pericytes and failure of endothelial cells, leading to

capillary closure and retinal ischaemia.80 In common with
other vascular beds in the body, AGEs and/or late Amadori
products have been localised to retinal vessels and
neuroglia of diabetics.81–85 The precise part played by these
adducts in the pathogenesis of diabetic retinopathy
remains ill defined although experimental studies have
demonstrated that AGEs may be responsible for retinal
vascular lesions86 87 and that aminoguanidine can prevent
this pathology.88 Interestingly, aminoguanidine does not
prevent the initial phase of experimental diabetic retin-
opathy in rats,89 although a secondary intervention study
with this drug has been shown to retard disease
progression.90 In diabetic rats, AGEs are not only localised
to vascular basement membranes (BMs), but also appear
to accumulate in the retinal pericytes after 8 months of
diabetes81 (Fig 4). Moreover, when non-diabetic animals
are infused with preformed AGE albumin, these adducts
accumulate around and within the pericytes, co-localise
with AGE receptors, induce BM thickening, and cause
breakdown of the inner blood-retinal barrier.81 87 91 In
clinical studies it has been reported that the levels of serum
AGEs, and also the glycoxidation product CML, correlate
with the degree of diabetic retinopathy.92 93

In vitro investigation of retinal vascular cells has
provided important insights into the action of these
adducts, their receptors, and how they contribute to tissue
dysfunction in diabetes. Retinal vascular endothelial cells
exposed to AGEs show abnormal endothelial nitric oxide
synthase (eNOS) expression, which may account for some
of the vasoregulatory abnormalities observed in the
diabetic vasculature.94 Advanced glycation can mediate
pathophysiological diVerentiation events (for example, cal-
cification) in retinal pericytes95 and initiate abnormal
growth responses in retinal vascular cells96 97 which can be
modulated, at least in part, by AGE receptors. In addition,
vascular endothelial growth factor (VEGF), which at high
levels is important for vascular incompetence and prolif-
eration can be upregulated in many retinal cell types after
exposure to AGEs,98–100 an eVect exacerbated by low PO2

Figure 3 AGEs accumulate at high levels in the lens and coronary arteries of smokers. (A) The cataractous lenses of
smokers (S) and non-smokers (NS) were removed, the protein extracted and quantified for AGE immunoreactivity using a
competitive AGE-ELISA. AGE levels were significantly higher in the lenses of smokers (*p<0.0007) (Nicholl et al28). (B)
AGE immunoreactivity in the vascular walls of coronary arteries from smokers, non-smokers, and smokers with diabetes.
AGEs deposited at higher levels in patients with a history of smoking tobacco products. Significantly, patients who had
diabetes and also smoked had supraelevated levels in their coronary arteries (*p<0.015; **p<0.001).

1.6

1.4

1.2

0.8

1.0

0.6

0.4

0.0

0.2

A

R
U

 9
93

 (
A

G
E

 U
/m

l)

NS S

3.0

2.0

2.5

1.5

1.0

0.0

0.5

B

A
G

E
 im

m
u

n
o

re
ac

ti
vi

ty

NS S S/D

Advanced glycation 749

www.bjophthalmol.com

http://bjo.bmj.com


(hypoxic) conditions98 with clear implications for barrier
dysfunction and disruption of vascular cell growth dynam-
ics. More research is needed to determine AGE pathogenic
influences on retinal vascular function, but it is clear that
these products, whether as adducts on important serum
derived proteins, as reactive intracellular intermediates or
as accumulative extracellular matrix crosslinks have the
potential to disrupt key signalling pathways with significant
impact on cellular function. Future mechanistic in vitro
and in vivo studies will help to establish the precise role of
advanced glycation in diabetic retinopathy.

RETINA (AGE RELATED DYSFUNCTION)
A spectrum of age related changes in the retinal pigment
epithelium (RPE) and underlying Bruch’s membrane has
been described clinically, ultrastructurally, and histopatho-
logically. The most prominent of these changes, coinciding
with the early stages of AMD, are extracellular deposits of
drusen, basal laminar deposits (BLDs), and changes in the
chemical composition, physical structure, and hydrody-
namics of Bruch’s membrane.101 102 Such changes are
thought to be important in the development of AMD.103

Drusen and BLDs form between Bruch’s and the RPE102

and although the histopathological characteristics of the
deposits are well documented, their precise chemical com-
position has only been partly resolved. BLD and drusen
have deleterious eVects on RPE structure and function and
the accumulation of lipofuscin and undigested phago-
somes in RPE cells with age has a direct influence on cel-
lular function and outer retinal integrity.104 105 Lipofuscin

accumulation in RPE cells may reflect accelerated
phagocytosis of defective rod outer segments and/or
impaired degradation of engulfed photoreceptor remnants
due to altered digestibility or failure of lysosomal
activity.106 107 Impaired RPE processing of shed photore-
ceptor outer segments is associated with drusen forma-
tion108 109 although the precise pathogenesis is poorly
understood.

There are growing links between advanced glycation and
ageing changes at the outer retina. Recent reports suggest
that AGEs accumulate in drusen and in Bruch’s mem-
brane with age and occur at a higher level in patients with
AMD.110–113 Further evidence linking AGE accumulation to
AMD can be surmised from the composition of drusen
which contains lipids, apolipoprotein E, amyloid, and
vitronectin114 115 (proteins which are modified by Maillard
chemistry during ageing).116–118 Advanced glycation is a fea-
ture of BM thickening and extracellular matrix dysfunction
during diabetes and it is significant that Bruch’s membrane
is also known to thicken progressively in older patients and
become less permeable.101 119

RPE cells are radically influenced by exposure to AGEs
in vitro where they express abnormal levels of vascular
endothelial growth factor (VEGF) and platelet derived
growth factor B (PDGF-B).98 112 This may have a bearing
on RPE cell function, maintenance of the choriocapillaris,
and integrity of the RPE/photoreceptor complex. The
accumulation of lipofuscin and reduction of lysosomal
degradative capacity in RPE cells may reflect AGE forma-
tion and receptor mediated transport of these adducts to
the lysosomal compartment (Fig 5). Significantly, intra-
cellular sequestration of these highly reactive adducts canFigure 4 AGE immunoreactivity in diabetic and aged rats. (A) Trypsin

digest of retinal vascular tree from an 8 month diabetic rat. AGE
immunoreactivity is marked in the arterioles and capillaries. The pericytes
of the retinal capillary beds are hyperfluorescent indicating accumulation
of AGEs (arrows). (B) AGE immunoreactivity in the retinal vasculature
of a 28 month old, non-diabetic rat. The immunofluorescence pattern is
diVerent from that observed in the diabetic retina (A) with AGE
localisation appearing confined to the vascular basement membranes of
arteries, arterioles and, to a lesser extent, the capillaries. Note the bright
fluorescence at arteriolar sphincters (arrow).

Figure 5 AGEs and AGE receptor accumulation in lysosomes. (A) AGE
receptor component (AGE-R1) (see Stitt et al 33) immunoreactivity in a
human RPE cell which was exposed to AGE albumin for 4 days before
fixation. Note the hyperfluorescent areas in a perinuclear position—a
distribution pattern which is indicative of RPE lysosomal compartments.
(B) AGE immunoreactivity in a glomerular epithelial cell from a diabetic
dog. Note the high density of gold particles in the lysosomes which indicate
AGE accumulation in these organelles.
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markedly reduce lysosomal enzymatic activity in other epi-
thelial cell types.120–122 Incomplete degradation of phagocy-
tosed photoreceptor outer segments is linked to the forma-
tion of lipofuscin in RPE cells123 and it is notable that
advanced glycation reactions appear to play an important
part in the formation of age related intracellular fluoro-
phores and lipofuscin granules in post-mitotic epithelial
cells.124

OTHER OCULAR TISSUES

Age related changes to retinal ganglion cells and the optic
nerve head is a recognised phenomenon with an aetiologi-
cal role in the pathogenesis of chronic open angle
glaucoma.125 Since AGE adducts accumulate with age on
many long lived macromolecules it is perhaps unsurprising
that these products have been detected within the
collagenous matrix of the lamina cribrosa where levels cor-
relate with age.126 The lamina cribrosa has an important
role in supporting the optic nerve axonal structure and the
AGE mediated crosslinking of this matrix may reduce flex-
ibility and perhaps induce age related axon damage which
is characteristic of this degenerative glaucomatous dis-
ease.126 Indeed, inhibition of AGE formation in diabetic
rats eVectively prevented diabetes induced myelinated
optic nerve atrophy.127

Anti-AGE therapeutic strategies
Prevention or amelioration of AGE mediated cell toxicity
has been a key strategy in the prevention of diabetic com-
plications and some age related pathology. To date there
have been a range of approaches which seek to either pre-
vent AGE formation, reduce AGE eVects on cells, or even
break established AGE crosslinks.

Amadori product formation is the basis of advanced gly-
cation biochemistry because progression to protein
crosslinks requires slow chemical rearrangement to create
reactive intermediates before the formation of irreversible
AGEs. An important pharmacological strategy for the
inhibition of this process utilises the small nucleophilic
hydrazine compound aminoguanidine, which is a potent
inhibitor of AGE mediated crosslinking.128 This drug can
prevent some diabetic vascular complications in experi-
mental animals,88 129–133 while clinical trials of aminoguani-
dine were shown to eVectively reduce AGE-Hb while leav-
ing HbA1c unaVected.134 Such optimism has been tempered
by the gradual realisation that aminoguanidine also inhib-
its a range of other important pathways, most notably gen-
eration of nitric oxide by eNOS,135 which may increase
non-specific and unwanted side eVects of the drug.
Nevertheless, aminoguanidine and/or other related AGE
inhibitors may eventually find a place in the management
of diabetics or in individuals at risk of age related sequelae.
Other AGE inhibiting drugs have been recently developed,
such as the thiazolidine derivative OPB-9195,136 pyridox-
amine,137 and 2,3 diaminophenazine (2,3 DAP).138

Prevention of AGEs interacting with their receptors or
other body proteins is a valid therapeutic approach. The use
of neutralising antibodies against glycated albumin has been
shown to prevent BM thickening in diabetic (db/db) mice
despite the fact that the antibodies did not alter the glycae-
mic status of the animals.87 Likewise, the use of the AGE
binding properties of lysozyme has succeeded in reducing
AGE levels in dialysate from diabetic patients with kidney
disease139 and presents a real possibility for reduction of toxic
AGE groups in the body fluids of patients with renal failure.
Furthermore, elucidation of AGE receptor signal transduc-
tion pathways may also oVer intracellular strategies to
control receptor mediated sequelae.

Recently, a novel therapeutic strategy has been to attack
the AGE crosslinks formed in biological systems. This is an

exciting approach since it would “break” pre-accumulated
AGEs and subsequently allow clearance via the kidney.
Such an AGE crosslink “breaker” prototype has been
described to attack dicarbonyl derived crosslinks in vitro.140

There are now at least two such chemical agents which
have the ability to reduce the tissue content of AGEs in
experimental diabetes,141 142 reverse hyperglycaemia related
arterial distensibility,136 and ameliorate age related myocar-
dial stiVness.143

Conclusion
It is evident that AGEs may play a significant pathogenic
part in diabetic complications and many age related disor-
ders. The pathogenesis of such disorders are multifactorial
and it is clear that advanced glycation, while perhaps hav-
ing a significant role, is not the only processes leading to
cell and tissue dysfunction. Nevertheless, key events in
diabetes and ageing such as free radical generation and
inappropriate activation of signalling molecules (for exam-
ple, protein kinase C, NFêB gene transcription) may have
important links to or are secondary consequences of
advanced glycation processes. It must also be stated that in
many ageing ocular tissues the accumulation of AGEs may
represent a function of the ageing process and their direct
aetiological function needs to be directly and unequivo-
cally proved. Whatever their place in the pathogenic
hierarchy of ocular disease, AGEs may play an important
part in diabetic retinopathy and cataract formation while
their putative involvement in glaucoma, diabetic keratopa-
thy, and AMD requires much more evaluation. As research
intensifies into Maillard chemistry and the cellular and
molecular consequences of advanced glycation, and as
pharmacological intervention strategies evolve, we may be
close to reducing some of the sight threatening complica-
tions aVecting diabetic and older individuals.
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